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A method of solution of three-dimensional axisymmetric problems by means 
of functions of a complex variable was proposed in cl-3 1; there the 
equations of the problem rere obtained by a rotation of the plane state 
about an axis of symmetry or by a linear translation of the axisymmetric 
state. Below (Section 1) the equations are obtained by means of a general 
solution [ 2-3 1 of the three-dimensional problem of elasticity theory in 
the form due to P.F. Papkovich. These equations are utilized for the so- 
lution of the first and second basic problems of elasticity theory for a 
sphere and for a region with a spherical cavity (Section 2). 

1. General equations for axisymmetric problems. 1. In the 
case of axisymnetric deformation of a body of revolution, the components 

of elastic displacement w, u may be represented in the following form 

(cf., for example, [ 4 I): 

2Gw = 4 (1 - Y) B, - & (zBz i- rB, + B,,) 

2Gu = 4 (1 - Y) B, - $- bBz + rB, + B,) (1.1) 

Here v is Poisson's ratio, G is the shear modulus, and B,, B,, B, are 
functions of the variables z, r satisfying the equations 

ns, = 0, a (B,e'O) = 0, LB, =0 (1.2) 
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these equations and below z, r, 8 are cylindrical coordinates, z 
the axis of revolution. 

pass a cutting plane through the z-axis. In this section a sym- 
metrical plane figure is obtained (Fig. 1). We consider syarnetrically 
situated points t and 2: We introduce functions &, &, & of a complex 
variable with the aid of the equations 

(1 .3) 

(t = 2 + r-i, t = 2 - ri) 

Here 6 is a complex variable in that same plane which varies from 
< = T to <.= t. 0 ne of the branches of the function d (6 - t)(< - t) 

should be used in these equations; for the 
sake of definiteness we assume that 

We will extend the branch cut (shown 
dotted in Fig. 1) to infinity. 

We require that the values of the 
integrals in (1.3) be independent of the 
path of integration, if the integration Fig. 1. 

is carried out along a smooth or piece- 
wise smooth curve, lying wholly within 
the region and not crossing the branch cut. Moreover, we note that the 
left-hand sides of the equalities (1.3) must be real. Hence it follows 
that the functions (b,(c) must be holomorphic within the region con- 
sidered, and 

Re cptL (5) = Relg, (5), lm rp, (5) = - Im vn 0 fm = 1‘ 2, 3) (1.4) 

It is not difficult to convince oneself that the integrals in Formu- 
las (1.3) converge absolutely and uniformly for r > 0. When r = 0 (i.e. 
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on the axis of synxnetry), we have the equalities 

Bz (2, ot = 'pl (z), B, (z,O> = 0, R, (2, 0) = 93 (2) (I.51 

Under these conditions the right-hand sides of (1.3) are continuous 
and differentiable functions of z and r. By direct calculation it may be 
shown that Equations (1.2) are identically satisfied. 

Substituting (1.3) into (1.11, we obtain for the displacements 

2Gu =ZI &i Iv2 (5) - zw’ (5) - (5 - 4 v2’ (5) --“p3’(5)1 
(5 - 4 d5 

t I/cr;-w-t) 

(r > 0, 

(x = 3 - 46) 

We introduce the notation 

cp (5) = $ [931 (5) - w (01 

9 (5) = 93’ (5) - 4 [W(5) t- 9pz (C)l + $ &Jr’ (5) + 92’ (91 

where #A0 and $40 are holomorphlc functions. We represent the equal- 
ities (1.6) in the following form: 

2Gu = - $ \ Iw KJ+ P - 0 rp’ (5) + 4~ (511 
(t - 4 4 

1/K - Cl (6 - G- 
(r > 0) 

r 

For r = 0 we have 

2Gw = xcp (2) - zcp’ (2) - qs (z), u=o (1.8) 

bations (l.?) may be used in solving the axisymnetrxc problem for 
prescribed displacements ws, us on the boundary of the region. For this 
the point t should be considered to lie on the contour of the region and 
the integration is carried out along an arc of the contour. Then the 
equalities (1.7) reduce to a system of two integral equations for the 
functions + and t,k 
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2. Using the well-known formulas relating the stresses and displace- 
ments in cylindrical coordinates, we find the expressions for the 
stresses 

1 

5, = f s (1.9) 
DJ’ (5) - (22 - 

T 

5) (P”aJ - 11’ (511 /;(c 
- 

;) 

For r =.O we obtain 

6, = 2rp’ (4 - .q” (2) - q (z), T,, = 0 
(1.10) 

og = 6, = (BY + 1) cp' (2) +$izqqz) + *,' (41 

Ekpressions (1.7) and (1.9) agree in essence with the formulas of 
[l-3 1, l%e difference consists only in a different disposition of the 
real and imaginary axes and some variations in notation. 

We will now write out the expressions for the stress resultants p, 

and p, acting on the contour. If a is the angle between the normal to' 
the contour (Fig. 1) and the z-axis, then the tractions p, and p, can be 

expressed in term of the stresses as follows: 

pz = 6, cos a + z,, sin a, pr = 7,, cos a + 6, sin a (1.11) 

We substitute (1.9) into (1.11); noting that cos a.=- dr/ds, sin a = 
-:dz/ds, we obtain 

t 

Pr =&&I [cp (6) + (22 - 5) cp’ (6) +q (5)] [ (5--z)* 
JGS - 0 (5 - ii 

+ 
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On the axis of syavnetry 

p* = 2cp’ (2) - zrp” (4 - 9’ (49 Pr = 0 (1.13) 

In these formulas t is the affix of a contour point. The equalities 

(1.12) may be used for the solution of the axisyrmmetric problem, when 

the external tractions are specified on the boundary. 

3. Up to now it has been assumed that the region occupied by the body 

is finite. But the same reasoning may be applied also to an infinite 

elastic region with an axisymnetric cavity, only now the branch cut for 

the radical ~'(5 - t)(< - t) should be passed through the cavity. All of 

the formulas obtained previously retain their meanings, with the excep- 

tion of (1.12). In the equalities (1.12) the directions of p, and p, 
should be reversed, and CL should now mean the angle between the z-axis 

and the inner directed normal. A necessary and sufficient condition for 

the convergence of the integrals in (1.3) and in the consequent formulas 

is that the functions c$,([> be holomorphic outside the cavity, including 

the point at infinity. Moreover, the following equalities must be 

satisfied: 

lim 'pa (C) = 0, lim &k4 (5) = 0, lim q3 (5) = 0 for C--+m (1.14) 

The functions 4 and $ also must be holomorphic outside the cavity and 

in the neighborhood of infinity have series expansions 

(1.15) 

where between al and al ' there is the relation 

(X + l)a, + n,' = 0 (1.16) 

These coefficients may be found easily with the aid of the first of 

the Formulas (1.12). If Z0 is the resultant of the external loads 

applied within the cavity, then the coefficients ci and al' are equal to 

(1.17) 
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'Ihe displacements and stresses at points lying on the axis of sym- 
metry beneath the cavity (Fig. 1) are determined by Formulas (1.8), 
(l.lO), (1.13). For points lying on the axis of symmetry above the 
cavity, the signs of these formulas should be reversed. 

'Ihe formulas obtained in this manner differ from the formulas for an 
infinite medilnn with a cavity obtained in [l-3 1 in that the functions ~5 
and + appearing in the present work are the derivatives of the corre- 
sponding functions in [l-3 1, 

2. Solution for a sphere and a space with a spherical 
cavity. 1. Let an elastic sphere of radius p be subjected to axisym- 
metric tractions mch components p, and p,. A section of the sphere 

formed & a plane passing through the axis of 
sysrnetry z is shown in Fig. 2. 

We will use Formulas (1.12). For the path 
of integration we will take the arc A1A, i.e. 
we set 6 = u, where u-is the affix of a point 
on the contour lying between A, and A. 

We carry out the integrations on the right- 
hand sides of the equalities (1.12) by parts, 
noting that 

tr .)P 
7. 

&J = pp, j = pe-i=, 2 2 p cos a, .r = p sin a 

Fig. 2. ds = p da, 6 = f&e 

Upon differentiating the result with resnecc to a, we obtain 

+$pTp"(a)+'2(cos O-cco~a)e~‘~‘~d~ 
--(I 

(24 

pr = +pT [-#'(a) +%p"' (a) +$" (a)]v2 (COS 9 - cos a) esiehdO- 
-0 

+a 
- $$- \ p”’ (ts) 12 (cos 9 - cos a)]“zesie’2d8 + 

* --oL 

++T [(2 i- 4v) cp’ (a) + alp” (Q) + $’ (a) I fl(cos 9 - cos a) esielz d0 - 
--(1 

+a 
- + p \ cp” (a) [2 (cos 8 - cos a)]“eS’e’2dfJ 

--II 
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We introduce holaaorphic functions F(c) and F,(c), whose relation to 
the fuuctions #(<> and $(<> is expressed by 

ip' (5) = W (5) + F (5) 

*i(6) = 217 (5) -t 5F’ (5) - 25*F" (5) - F1 (5) 

'Ihen the equalities (2.1) may be put into the form 

(2.2) 

pz_~+yF,(o)- ,sie;zd~ 

v2 (cos fJ - cos a) * 
--L1 

(2.3) 

yr sin a = f f +a [4 (1 i9)cp' (a) + 491;" (0) - 
(2.4) 

--P 

- GFI' (a) - FZ (a)] v2 (cos 0 - cos a)e3""'dfJ 

Making use of the properties (1.4), which the functions F(4) and 
F1(<) also obviously possess, we represent (2.3) in the following form: 

D,= ;Re @(a) 
esie/*d fj 

We multiply this equality by0 

1/2 (cos 0 - cos a) 

sin ada 

i/ 2 (cos a - cos y ) 

and inteftrate between the limits 0 and y. 

On XL right-hand side we interchange the order of integration and 
Y 

s 
sin a da II 

B j/2(cos Q-cosa)1/2 (cosa-cosy) = 2-’ 

As a result we have 

Y 

s pz sin a da 

o v/2 (cosa - CO: 7) 
= Re 5 F, (0) e:*‘@d8 

o 

Whence 

+e--iY/2 .$ ’ s pz sin a da 

o )/2(&a -cosy) 

= ++~/2 Re [F1 (z) .33W*] - 

= TFI (z) + $- FI (z) (1: = peaY) (2.5) 

We multiply the left and right-hand sides of (2.5) by the quantity 

1 dr 
m-z--T, 
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and integrate around the closed contour L. in view of well-known pro- 
perties of Cauchy integrals we obtain 

(2.6) 

Ey exactly .similar reasoning *e find 

V(r)= 2e--~Y/~ 

= 4 [f+(5) + 2 (1 + y) w (6) + (1 + v) Jwf 

Solving the differential equation for F(c), we have 

(2.8) 

(2.9) 

where k1 and k, are the roots of the characteristic equation 

ka + (1 -2v)k+l+v=O 

Ihe integration constants here are chosen in melt a maqner that the 
function F(S) will be holomorphic. 

All of the above considerations remain valid also in the case of an 
elastic space containing a spherical cavity, except the signs are re- 
versed on the right hand sides of the Formulas (2.6), (2.8), (2.9), and 
the positive directions of p, and p, are changed. 

2. If the displacements ~9, u9 are given on the boundary of the 
sphere, then the expressions with which we start are the equalities 
(1.7). 

Calculations analogous to those carried out above lead to the formulas 

(2.10) 
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where 

2Guo sin* a da 

- 1/2(cosa-cosy) 1 
2iewiy d --- 

P dy 

2Gw~ sin a da 

2 (cos a - cos r) 1 
The relations between the functions f(T) and f,(c) and the functions 

qb and I/J are 

cp (5) = 25f’ (5) - f (5) (2.ll) 

9 (0 = - 4 (5). + (2% - 1) u (5) - 2P2f” (5) - P (5) 

3. Bxarplc I. Elastic sphere of unit radius under a 

p. In this case p, =,-p cos a, p, = -p sin a 

7 

s 

pz sin ada 

,1/w 
sina -I 

cos a - cos r) 
2 

uniform pressure 

Y 

16.,y 64.-y ;----91nJ- 
L 15 2 

According to Foraalas (2.6) to (2.9) re obtain 

FIG) = - P. v (r) =-33, v(5)=-_ap 

3P F(c)=-4&=-- 
4 (1 + v) 

Fran Form&a (2.2) -8 have 

3P 
9 (5) = - ,$ (1 + V) 3 

l-2V 
CP’K) =-- 

2 (I+ 9 p 

Hence the follaring expressions are correct up to real additive con- 
stants 

v Q-J = - hq&l;’ * (Pf = 
1-2v 

- - PC 2 (1 + v) 

According to Formulas (1.10) the stresses on the axis of symmetry are 
equal to 

a* = 2 (p’ (2) - q”(z) - “p’ (2) = - p, 7 rt=O’ 

6, = css = (2 v + 1) 9 (0) 4- ; IV” (21 + 9’ WI = - P 

Exomplc 2. Spherical cavity of radi4.s p under the action of o uni- 
forr pressure p. In this case p, = -p cos a, p, = -p sin a, ‘le obtain 
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WC)=-p$* V(r)=-33, t‘ (0 = 0. F ftf -2 0 

cp’ (El= 0’9 cp’ (f) = P g ? a: (f) = 0, 
Pa 

9(6)=-Pi@ 

Tbe corresponding stresses on the axis of symmetr3 8re 

Bxaaplr 3. Elastic space uith an absolatcly rigid spherical ineltmion, 

which is under the action of an axial force ZO. Here w0 = coast, a0 = 0 

,-2ir 
A!(y)= -2Gw5--) ~GWOP 

2 (5) = - xc- 

fdC)=-o+ s f (5) = - 2 GW@P 1 
2 (3% + 1) -C 

Whence 

P (6) 3Gwop 1 
Q (5) = - 

3 (x + 1) Gwop 1 4Gwop” 1 
=3x$-1r;’ 3x + i T+-- 3x+1 fa 

From (1.17) we can write 

AZ0 = 3 (x + i) GWOP 
3x+1-- 

For pc+ 0 we obtain the solution for 8 ConCentr8ted force Z,, applied 
8t the Origin 

5 1 
~(c)=4,(%+l) g* ‘Pa=+ 

The stresses OII the axis of eymetr~ will be (z.> 0) 

(2 -v)Zo 1 6, = - 

4n(f--V)F 
6 =cI = (1 -wzo + 
a. 0 8n(i-v) z 

which coincide with well-known formulss. 
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