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A method of solution of three-dimensional axisymmetric problems by means
of functions of a complex variable was proposed in [1-31; there the
equations of the problem were obtained by a rotation of the plane state
about an axis of symmetry or by a linear translation of the axisymmetric
state. Below (Section 1) the equations are obtained by means of a general
solution [ 2-3 ] of the three-dimensional problem of elasticity theory in
the form due to P.F. Papkovich. These equations are utilized for the so-
lution of the first and second basic problems of elasticity theory for a
sphere and for a region with a spherical cavity (Section 2).

1. General equations for axisymmetric problems. 1. In the
case of axisymmetric deformation of a body of revolution, the components
of elastic displacement w, u may be represented in the following form
(cf., for example, [41]):

2Gw = 4 (1 — v) B, — (2B, + 1B, + B,)
26u = 4 (1 — v) B, — -2 (3B, + rB, + B,) (1.1)

Here v is Poisson’s ratio, G is the shear modulus, and B,, B, B, are
functions of the variables z, r satisfying the equations

AB, = 0, A (Beit) = 0, ABy =0 1.2)

a® 22 1.9 1 o
(6 =3 + o + 75 + 7 5g)
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Three-dimensional axisymmetric problems of elastic theory 189

In these equations and below 2z, r, 8 are cylindrical coordinates, z
being the axis of revolution.

We pass a cutting plane through the z-axis. In this section a sym-
metrical plane figure is obtained (Fig. 1). We consider symmetrically
situated points t and f. We introduce functions ¢, ¢,, ¢; of a complex
variable with the aid of the equations

t

i df,
BZ ’ = i e
&) ’“§qj1 RV
t
t C—2) :
B, (z, r) = — C—ad 1.3
(2 1) “”;S%( Y (1-3)
¢
1 dt
By (z, 1) = =\ @5 (0) e
o (2, r)=— ;%( ) Vo t—>

t=z+4ri,t=2z—ri)

Here { is a complex variable in that same plane which varies from
¢ =T to{=t. One of the branches of the function v (£ - t)({ - ¢)
should be used in these equations; for the
sake of definiteness we assume that

]/' (T = 0) (L — &) = V prgeitntanre

if ) _ ]
L—t = pe™, £ —1t = pe™

We will extend the branch cut (shown
dotted in Fig. 1) to infinity.

We require that the values of the
integrals in (1.3) be independent of the
path of integration, if the integration Fig.
is carried out along a smooth or piece-
wise smooth curve, lying wholly within
the region and not crossing the branch cut. Moreover, we note that the
left-hand sides of the equalities (1.3) must be real. Hence it follows
that the functions ¢,({) must be holomorphic within the region con-
sidered, and

Reg, (D) = Reg, (§), Im o, (}) = —Im g, () (n=1.2,3) (1.4)

It is not difficult to convince oneself that the integrals in Formu-
las (1.3) converge absolutely and uniformly for r > 0. When r = 0 (i.e.
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on the axis of symmetry), we have the equalities

B, (2,0) =¢i(2), B, (z0) =0, By(30) =g (2 (1.5)

Under these conditions the right-hand sides of (1.3) are continuous
and differentiable functions of z and r. By direct calculation it may be
shown that Equations (1.2) are identically satisfied.

Substituting (1.3) into (1.1), we obtain for the displacements

[ (1.6)
26w = L — 2@y’ () — (F — RN o dg
w =g §[x¢x O = =0 = = 900 — W Q)5 =2
t
260 = =t () — 20 (© — € — Do’ (O — ' (O] VT’T}ngT
) =
(r>0,

(x = 3 — 49)

We introduce the notation
? (0) =5 91 () — @2 (D)}
PO =0 () — % o1 () + o (O + 5 o2’ (©) + 9’ (D]

where ¢({) and Y{({) are holomorphic functions. We represent the equal-
ities (1.6) in the following form:

df
26:—— — (22— 0o (D) — ¥ () =
w g b @ — @2 = D9 @) =% D) s an
t
N 1 _ —9dE__ ,
2Gum———m.—,§lmv O+ @z — Do’ (O +v @) Vm) >0
For r = 0§ we have
26w = 9 (2) — 20’ (2) —$(z), u=20 (1.8

Equations (1.7) may be used in solving the axisymmetric problem for
prescribed displacements w,, u, on the boundary of the region. For this
the point t should be considered to lie on the contour of the region and
the integration is carried out along an arc of the contour. Then the
equalities (1.7) reduce to a system of two integral equations for the
functions ¢ and .
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2. Using the well-known formulas relating the stresses and displace-

ments in cylindrical coordinates, we find the expressions for the
stresses

{20 ) — 22— DO — v 1 —2 o
6, = — — (22 — — e
il ? Vie—ne—0n
t
_ v dag —
" TN Oy
t
—z)dl
[ 20 — D¢’ (1) +
m,tgxmw 0¥ @)+ (@)
¢
4{14v) P df
Gr= = C = ——Gz“‘—ﬁ
m §@() Vie—n@—n '
t
1 —2)df
vz = — —— 2 —_— + l s e — r 0
g §{<z Do Q) +v @ V(g—zm—:) >0
For r =0 we obtain
=2 () — 2" (1) — ¥ (2), T =0
(1.10)

%=0= (@ +19¢ () + 4" (2) + v (3]

Expressions (1.7) and (1.9) agree in essence with the formulas of
[1-3]. The difference consists only in a different disposition of the
real and imeginary axes and some variations in notation.

We will now write out the expressxons for the stress resultants p,
and p_ acting on the contour. If a is the angle between the normal to

the contour (Fig. 1) and the z-axis, then the tractions p  and p,_ can be
expressed in terms of the stresses as follows:

Pz = 6, €08 & + T, sin a, Pr= T, c080 + 6,sin a (1.11)

We substitute (1.9) into (1.11); noting that cos a = dr/ds, sin a =
-:dz/ds, we obtain

1
wir ds

pe=— [P (5) — (22 — ) ¢’ (§) —¥ (§)] ~—=22

Ve—nieg—o

t
d 2
2@ +@—09¢ @ +v(©) €—2)
d; [V@—0@-6 +

'ﬂ;/?"
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i

+1/(5"—z><c—2>}dc— S‘“‘g 3449 +

irt

2, _ C‘—Z)dQ
F @2z -0 (5) +¥ ()] Ve (r>0) (1.12)

On the axis of symmetry
P = 29’ (2) — z¢” (2) — ¢’ (2), Pr = 0 (1.13)

In these formulas t is the affix of a contour point. The equalities
(1.12) may be used for the solution of the axisymmetric problem, when
the external tractions are specified on the boundary.

3. Up to now it has been assumed that the region occupied by the body
is finite. But the same reasoning may be applied also to an infinite
elastic region with an axisymmetric cavity, only now the branch cut for
the radical v ({ — t)({ - t) should be passed through the cavity. All of
the formulas obtained previously retain their meanings, with the excep-
tion of (1.12). In the equalities (1.12) the directions of p_  and p_
should be reversed, and a should now mean the angle between the z-axis
and the inner directed normal. A necessary and sufficient condition for
the convergence of the integrals in (1.3) and in the consequent formulas
is that the functions ¢,({) be holomorphic outside the cavity, including
the point at infinity. Moreover, the following equalities must be
satisfied:

limga (§) =0, limfg2(f) =0, limgs(D) =0 for {—~oo (1.14)

The functions ¢ and ¢ also must be holomorphic outside the cavity and
in the neighborhood of infinity have series expansions

Q) = + 24 wz)-"’ + % L 4 (1.15)

where between a; and al’ there is the relation

(x +1)ay +a,” =0 (1.16)

These coefficients may be found easily with the aid of the first of
the Formulas (1.12). If Z is the resultant of the external loads
applied within the cav1ty, then the coefficients a; and a,” are equal to

ZO ' 20

m)—, a; = ——= 57— (1.17)

&= 4n
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The displacements and stresses at points lying on the axis of sym-
metry beneath the cavity (Fig. 1) are determined by Formulas (1.8),
(1.10), (1.13). For points lying on the axis of symmetry above the
cavity, the signs of these formulas should be reversed.

The formulas obtained in this manner differ from the formulas for an
infinite medium with a cavity obtained in [1-3] in that the functions ¢
and iy appearing in the present work are the derivatives of the corre-
sponding functions in [1-3 1],

2. Solution for a sphere and a space with a spherical
cavity. 1. Let an elastic sphere of radius p be subjected to axisym-
metric tractions with components p_ and p, . A section of the sphere
formed by a plane passing through the axis of
symnetry z is shown in Fig. 2.

L We will use Formulas (1.12). For the path

of integration we will take the arc A/4, i.e.
p we set { = 0, where o-is the affix of a point
7 on the contour lying between A, and A.

We carry out the integrations on the right-
4 hand sides of the equalities (1.12) by parts,
g noting that

1z 4 t = pei“, 1=pe™ z-=pcosa, r=psina

Fig. 2. ds = p da, 6 = peid (—ae<8<a)

Upon differentiating the result with respecc to a, we obtain
“+a

= ._1_ ’ L Zew o eaie/zde
P | O =@ 0~V ) s
+a
+ 'i— P S @" (5) V2 (cos 6 — cos a) e db (2:1)
+a -
pr= —:—l—p S [— 9" (6) + 69" (6) + " (6)] V2 (cos 0 — cos a) **2dg —
A e

_%eni ‘ 9" () 12 (cos 6 — cosa)]”e*%d6 +

—a

+a
+“in‘ S [(2 + 4v) ¢’ (0) + oy” (6) + ¢’ ()1 /2 (cos § — cos ) e*¥2do—

—a

“+a
—-—:Tp S 9" (0) [2 (cos 8 — cos )]"e™*2d

—_—a
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We introduce holomorphic functions F{({) and F,({), whose relation to
the functions ¢({) and () is expressed by

9 (5) = 28F (D) + F (D) (2.2)
W;(C) = 2F (§) +LF" (§) — 25°F" () — F1 ()

Then the equalities (2.1) may be put into the form
+a

1 esiﬂﬁde
- 2 2.3)
P: n }a Fy (o) V2 (cos § — cos a) (2-3)
+a
Py sin & = % S 4 (1 4+ ™) ¢ (6) + 46%F" () — 2.4

—a

— 6F1" (6) — F1(6)] V2 (cos § — cos ) €"d8
)

Making use of the properties (1.4), which the functions F({) and
F(({) also obviously possess, we represent (2.3) in the following form:

a

2 . 358/2d
v,:R—Re SF‘(G) Vz(ce 6
o

2{cos § —cosa)
We multiply this equality by
sina da
V2 (cosa —cos )
and inteprate between the limits 0 and y.

On :a. right-hand side we interchange the order of integration and
s

S sin a da
3 V2(cos § —cosa) V2 (cosa — cos 1)

==
=5
As a result we have

§ P sinada

VZ({cosa —cos 1) o

Y
Re% F, (o) ex49/2dp
0 0
Vhence

Y
. sin o do , .
2peive £ = PEER_ _ gpe—ivaRe (Fi (v) ] =

p V2 (cosa — cos )

= tF1 (t) + 15- Fi (1) (t == pe'™) (2.5)
We multiply the left and right-hand sides of (2.5) by the quantity

1 dt
2ni t—¢
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and integrate around the closed contour L. In view of well-known pro-
perties of Cauchy int.egrals we obtain

20 e g ¢ p,sinada
F 2p a z 2.6
1(8) = Zm §) § t—¢ ar § V2 (cosa — cos 1) (26

By exactly similar reasoning we find

Y
d i1 d r sin® o do
v 2¢-sivia 2L [ i .....S _prsinfada ]__
= dy |siny dy 3 V2Z(cosa —cos¥)

p.sinada

— Die—iv ;i [e—im d S ] =41 +v) ¢ (1) + 4TF" (v) —

V2 (cosa — cos 7)

— —mF, Gl + L h (VPR + 4R (1)1- L [tFi(v) .7
and also
o =7 | 2T =4 A+ o @ + 4P O =
(L)
=4[PF Q) +20+vF @+ +v)FO)I (2.8)

Solving the differential equation for F(() we have
FO =200 e — 5 )7 ® o 2.9)

where k, and k, are the roots of the characteristic equation

B+ —-—22wk+14+v=0
The integration constants here are chosen in such a magner that the
function F({) will be holomorphic.

All of the above considerations remain valid also in the case of an
elastic space containing a spherical cavity, except the signs are re-
versed on the right hand sides of the Formulas (2.6), (2.8), (2.9), and
the positive directions of p, and p_ are changed.

2. If the displacements w,, u, are given on the boundary of the
sphere, then the expressions with which we start are the equelities
(1.7).

Calculations analogous to those carried out above lead to the formulas

AD =2 | 26 4 § 26wy sin a da
1 2::: (L) T—8 dr ) V2(cosa—cos 1)

1o =520 —~-——Sz<t,) dt (240
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where

_n4-1 _ 1 X(y) dr
k= 2 =2 | Ta e

P i
X(p) = 2RV _d__[ 1 _(_i_g 2Guq sin2 ot do ]
p dy {siny dy ) V2 (cosa —cosy)

<

2te"” d [e_;m LS 2Gw, sin o do ]
p o dy dy J V2 (cosa — cos 1)
The relations between the functions f({) and f,({) and the functions
¢ and ¢ are
@ (0 =25/ (§) — (D) (2.11)
P (L) = — %f (0)-+ (20 — 1) Tf' (§) — 2p*f" (8) — 1 (D)

3. Example 1. Elastic sphere of unit radivs under a uriform pressare

p. In this case p_ =-pcosa, p . =-psina
P, sin ada
S == --p(2 sm}--* .?_ sind l)
p V2 (cosa — cosT) (cosa —cosT) 2 3 2
v
2
S P2 sin? ada "—-p(— sin? I....élfsma T)
J Y2 (cosa—cos¥y) 2 15 2

According to Formulas (2.8) to (2.8) we obtain

Fi{{)=—p Vix)=—3p, v Q) =—7
B 3p _ 3p
F@)““ulkg il FV)

From Pormula (2.2) we have
vy SP R 1—2v
Hence the following expressions are correct up to real additive con-
stants
_ 3p _ 1-—2v
According to Pormulas (1.10) the stresses on the axis of symmetry are
equal to
czz2q>’(z)-—z<p”(z)-—\p’(z)=——p, T, =0"
6, =6 =Qv+ N @ +39" @ +V @ =—p
Example 2. Spherical cavity of radi.s p under the action of a uni-
form pressure p. In this case p,=-pcosa, p, . =—p sin a. We obtain
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Fl(c>=~p%, Vi)=—3p, v@=0, F@=0

k-]
¢ Q=0 cp'(@)=pg§. eO=0, YO=—rP3n

The corresponding streasses on the axis of symmetry are

p? p®
O;=—P 3> %z6w=PZ§ for z>0
p* 3
G, =Py3> %=6w=—P%5 for z<<0

Example 3. Elastic space with an absolutely rigid spherical inclusion,
which is under the action of an axiel force Z,. Here w, = const, u, = 0

21y
X () = —2Guwp — z(g):ng("g’gﬂ
f1{8) =2 Gwep £ F@ = TR T
Yhence
__ 3Guwep 1 . 34 1)Guwep 1 |, 4Guwyp® 1
PO=gp 17 YO=—"goi  ttmrio

From (1.17) we can write

i

1, 3(x+1) Gup
Gn 70

3x+ 1
Whence

% 1 a2t Zet 1
O=frarn g YOS TLRITRmeIDE

For p.» 0 we obtain the solution for a concentrated force Z, applied
at the origin

Z 1 Zy &
‘P(§)=mz—, ‘P(C)="‘;i—“°?

The stresses on the axis of symmetry will be (z> 0)

m e 2—V)Zo 1 o —g L= 2V)Z 3
z dn(t—w) 22’ rTe T Bl —v) B

which coincide with well-known formulas,
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